2,450 research outputs found

    Bayesian evaluation of the southern hemisphere radiocarbon offset during the holocene

    Get PDF
    While an interhemispheric offset in atmospheric radiocarbon levels from AD 1950–950 is now well established, its existence earlier in the Holocene is less clear, with some studies reporting globally uniform 14C levels while others finding Southern Hemisphere samples older by a few decades. In this paper, we present a method for wiggle-matching Southern Hemisphere data sets against Northern Hemisphere curves, using the Bayesian calibration program OxCal 4.1 with the Reservoir Offset function accommodating a potential interhemispheric offset. The accuracy and robustness of this approach is confirmed by wiggle-matching known-calendar age sequences of the Southern Hemisphere calibration curve SHCal04 against the Northern Hemisphere curve IntCal04. We also show that 5 of 9 Holocene Southern Hemisphere data sets are capable of yielding reliable offset information. Those data sets that are accurate and precise show that interhemispheric offset levels in the Early Holocene are similar to modern levels, confirming SHCal04 as the curve of choice for calibrating Southern Hemisphere samples

    Is there any Evidence for Regional Atmospheric 14C Offsets in the Southern Hemisphere?

    Get PDF
    Center for Accelerator Mass Spectrometry (CAMS) Tasmanian huon pine (Lagarostrobos franklinii) decadal measurements for the interval AD 745–855 suggest a mean interhemispheric radiocarbon offset (20 ± 5 yr), which is considerably lower than the previously reported mean interhemispheric offset for the last 2 millennia (44 ± 17 yr). However, comparable University of Waikato (Wk) New Zealand kauri (Agathis australis) measurements show significantly higher values (56 ± 6 yr), suggesting the possibility of a temporary geographic (intrahemispheric) offset between Tasmania, Australia, and Northland, New Zealand, during at least 1 common time interval. Here, we report 9 new Wk Tasmanian huon pine measurements from the decades showing the largest huon/kauri difference. We show statistically indistinguishable Wk huon and Wk kauri 14C ages, thus dispelling the suggestion of a 14C geographic offset between Tasmania and Northland

    MCMC-ODPR : primer design optimization using Markov Chain Monte Carlo sampling

    Get PDF
    Background Next generation sequencing technologies often require numerous primer designs that require good target coverage that can be financially costly. We aimed to develop a system that would implement primer reuse to design degenerate primers that could be designed around SNPs, thus find the fewest necessary primers and the lowest cost whilst maintaining an acceptable coverage and provide a cost effective solution. We have implemented Metropolis-Hastings Markov Chain Monte Carlo for optimizing primer reuse. We call it the Markov Chain Monte Carlo Optimized Degenerate Primer Reuse (MCMC-ODPR) algorithm. Results After repeating the program 1020 times to assess the variance, an average of 17.14% fewer primers were found to be necessary using MCMC-ODPR for an equivalent coverage without implementing primer reuse. The algorithm was able to reuse primers up to five times. We compared MCMC-ODPR with single sequence primer design programs Primer3 and Primer-BLAST and achieved a lower primer cost per amplicon base covered of 0.21 and 0.19 and 0.18 primer nucleotides on three separate gene sequences, respectively. With multiple sequences, MCMC-ODPR achieved a lower cost per base covered of 0.19 than programs BatchPrimer3 and PAMPS, which achieved 0.25 and 0.64 primer nucleotides, respectively. Conclusions MCMC-ODPR is a useful tool for designing primers at various melting temperatures at good target coverage. By combining degeneracy with optimal primer reuse the user may increase coverage of sequences amplified by the designed primers at significantly lower costs. Our analyses showed that overall MCMC-ODPR outperformed the other primer-design programs in our study in terms of cost per covered base

    Robust radiocarbon dating of wood samples by high-sensitivity liquid scintillation spectroscopy in the 50–70 kyr age range

    Get PDF
    Although high-sensitivity liquid scintillation (LS) spectroscopy is theoretically capable of producing finite radiocarbon ages in the 50,000- to 70,000-yr range, there is little evidence in the literature that meaningful dates in this time period have been obtained. The pressing need to undertake calibration beyond 26 kyr has resulted in the regular publication of ¹⁴C results in excess of 50 kyr, yet very little effort has been made to demonstrate their accuracy or precision. There is a paucity of systematic studies of the techniques required to produce reliable dates close to background and the methods needed to assess contamination from either in situ sources or laboratory handling and processing. We have studied the requirements for producing accurate and reliable dates beyond 50 kyr. Laboratory procedures include optimization of LS spectrometers to obtain low and stable non-¹⁴C background count rates, use of low-background counting vials, large benzene volumes, long counting times, and preconditioning of vacuum lines. We also discuss the need for multiple analyses of a suitable material containing no original ¹⁴C (background blank) and the application of an appropriate statistical model to compensate for variability in background contamination beyond counting statistics. Accurate and reproducible finite ages >60 kyr are indeed possible by high-sensitivity LS spectroscopy, but require corroborating background blank data to be defensible

    Revised calendar date for the Taupo eruption derived by ¹⁴C wiggle-matching using a New Zealand kauri ¹⁴C calibration data set

    Get PDF
    Taupo volcano in central North Island, New Zealand, is the most frequently active and productive rhyolite volcano on Earth. Its latest explosive activity about 1800 years ago generated the spectacular Taupo eruption, the most violent eruption known in the world in the last 5000 years. We present here a new accurate and precise eruption date of AD 232 ± 5 (1718 ± 5 cal. BP) for the Taupo event. This date was derived by wiggle-matching 25 high-precision ¹⁴C dates from decadal samples of Phyllocladus trichomanoides from the Pureora buried forest near Lake Taupo against the high-precision, first-millennium AD subfossil Agathis australis (kauri) calibration data set constructed by the Waikato Radiocarbon Laboratory. It shows that postulated dates for the eruption estimated previously from Greenland ice-core records (AD 181 ± 2) and putative historical records of unusual atmospheric phenomena in ancient Rome and China (c. AD 186) are both untenable. However, although their conclusion of a zero north–south ¹⁴C offset is erroneous, and their data exhibit a laboratory bias of about 38 years (too young), Sparks et al. (Sparks RJ, Melhuish WH, McKee JWA, Ogden J, Palmer JG and Molloy BPJ (1995) ¹⁴C calibration in the Southern Hemisphere and the date of the last Taupo eruption: Evidence from tree-ring sequences. Radiocarbon 37: 155–163) correctly utilized the Northern Hemisphere calibration curve of Stuiver and Becker (Stuiver M and Becker B (1993) High-precision decadal calibration of the radiocarbon timescale, AD 1950–6000 BC. Radiocarbon 35: 35–65) to obtain an accurate wiggle-match date for the eruption identical to ours but less precise (AD 232 ± 15). Our results demonstrate that high-agreement levels, indicated by either agreement indices or χ² data, obtained from a ¹⁴C wiggle-match do not necessarily mean that age models are accurate. We also show that laboratory bias, if suspected, can be mitigated by applying the reservoir offset function with an appropriate error value (e.g. 0 ± 40 years). Ages for eruptives such as Taupo tephra that are based upon individual ¹⁴C dates should be considered as approximate only, and confined ideally to short-lived material (e.g. seeds, leaves, small branches or the outer rings of larger trees)

    Evidence for suppressed mid-Holocene northeastern Australian monsoon variability from coral luminescence

    Get PDF
    Summer monsoon rainfall in northeastern (NE) Australia exhibits substantial interannual variability resulting in highly variable river flows. The occurrence and magnitude of these seasonal river flows are reliably recorded in modern inshore corals as luminescent lines. Here we present reconstructed annual river flows for two ~120 year mid-Holocene windows based on luminescence measurements from five cores obtained from three separate coral colonies. We were able to cross-date the luminescence signatures in four cores from two of the colonies, providing confidence in the derived reconstruction. Present-day NE Australian rainfall and river flow are sensitive to El Niño–Southern Oscillation (ENSO) variability, with La Niña (El Niño) events typically associated with wetter (drier) monsoon seasons. Thus, our replicated and annually resolved coral records provide valuable insights into the northern Australian summer monsoon and ENSO variability at a key period (6 ka) when greenhouse gas levels and ice sheet cover were comparable to the preindustrial period but orbital forcing was different. Average modern and mid-Holocene growth characteristics were very similar, suggesting that sea surface temperatures off NE Australia at 6 kyr were also close to present values. The reconstructed river flow record suggests, however, that the mid-Holocene Australian summer monsoon was weaker, less variable from year to year (possibly indicative of reduced ENSO variability), and characterized by more within-season flood pulses than present. In contrast to today, the delivery of moisture appears to have been dominated by eastward propagating convective coupled waves associated with the Madden-Julian Oscillation

    Archaeogenetic evidence of ancient Nubian barley evolution from six to two-row indicates local adaptation

    Get PDF
    Background Archaeobotanical samples of barley (Hordeum vulgare L.) found at Qasr Ibrim display a two-row phenotype that is unique to the region of archaeological sites upriver of the first cataract of the Nile, characterised by the development of distinctive lateral bracts. The phenotype occurs throughout all strata at Qasr Ibrim, which range in age from 3000 to a few hundred years. Methodology and Findings We extracted ancient DNA from barley samples from the entire range of occupancy of the site, and studied the Vrs1 gene responsible for row number in extant barley. Surprisingly, we found a discord between the genotype and phenotype in all samples; all the barley had a genotype consistent with the six-row condition. These results indicate a six-row ancestry for the Qasr Ibrim barley, followed by a reassertion of the two-row condition. Modelling demonstrates that this sequence of evolutionary events requires a strong selection pressure. Conclusions The two-row phenotype at Qasr Ibrim is caused by a different mechanism to that in extant barley. The strength of selection required for this mechanism to prevail indicates that the barley became locally adapted in the region in response to a local selection pressure. The consistency of the genotype/phenotype discord over time supports a scenario of adoption of this barley type by successive cultures, rather than the importation of new barley varieties associated with individual cultures

    Mapping and explaining the productivity of Pinus radiata in New Zealand

    Get PDF
    Mapping Pinus radiata productivity for New Zealand not only provides useful information for forest owners, industry stakeholders and policy managers, but also enables current and future plantations to be visualised, quantified, and planned. Using an extensive set of permanent sample plots, split into fitting (n = 1,146) and validation (n = 618) datasets, models of P. radiata 300 Index (an index of volume mean annual increment) and Site Index (an index of height growth) were developed using a regression kriging technique. Spatial predictions were accurate and accounted for 61% and 70% of the variance for 300 Index and Site Index, respectively. Productivity predicted from these surfaces for the entire plantation estate averaged 27.4 m³ ha⁻¹ yr⁻¹ for the 300 Index and 30.4 m for Site Index. Surfaces showed wide regional variation in this productivity, which was attributable mainly to variation in air temperature and root-zone water storage from site to site

    Variations of radiocarbon in tree rings: southern hemisphere offset preliminary results

    Get PDF
    The Queen's University of Belfast, Northern Ireland and University of Waikato, Hamilton, New Zealand radiocarbon laboratories have undertaken a series of high-precision measurements on decadal samples of dendrochronologically dated oak (Quercus patrea) and cedar (Libocedrus bidwillii) from Great Britain and New Zealand, respectively. The results show a real atmospheric offset of 3.4 ± 0.6% (27.2 ± 4.7 ¹⁴C yr) between the two locations for the interval AD 1725 to AD 1885, with the Southern Hemisphere being depleted in ¹⁴C. This result is less than the value currently used to correct Southern Hemisphere calibrations, possibly indicating a gradient in Δ¹⁴C within the Southern Hemisphere

    Towards a radiocarbon calibration for oxygen isotope stage 3 using New Zealand kauri (Agathis australis)

    Get PDF
    It is well known that radiocarbon years do not directly equate to calendar time. As a result, considerable effort has been devoted to generating a decadally resolved calibration curve for the Holocene and latter part of the last termination. A calibration curve that can be unambiguously attributed to changes in atmospheric ¹⁴C content has not, however, been generated beyond 26 kyr cal BP, despite the urgent need to rigorously test climatic, environmental, and archaeological models. Here, we discuss the potential of New Zealand kauri (Agathis australis) to define the structure of the ¹⁴C calibration curve using annually resolved tree rings and thereby provide an absolute measure of atmospheric ¹⁴C. We report bidecadally sampled ¹⁴C measurements obtained from a floating 1050-yr chronology, demonstrating repeatable ¹⁴C measurements near the present limits of the dating method. The results indicate that considerable scope exists for a high-resolution ¹⁴C calibration curve back through OIS-3 using subfossil wood from this source
    corecore